Span and linear independence example
선형대수학의 기본적인 두 가지 개념
첫 번째로 물어볼 것은 벡터 집합인 s에 관한 것이다. 벡터들은 모두 R³ 벡터들이며 세 개씩의 원소를 가지고 있을 때 s의 생성은 R³과 같을까?
두 번째 질문은 이 벡터들은 모두 선형독립할까?
R³를 생성한다는 것은 세 벡터로 구성된 임의의 일차식이 R³의 임의의 벡터를 표현할 수 있다는 것이다. 어떠한 실수 a, b, c가 주어질 때 c3, 나아가 c2, c1에 대한 식을 세울 수 있다.
스칼라 곱의 정의
실수 a, b, c에 대한 c1, c2, c3를 구하기 위한 식은 아래와 같다.
위의 식을 이용하여 c1, c2, c3를 구하면 다음과 같다.
R³의 임의의 벡터를 구하려면 임의의 실수 a, b, c가 주어지면 된다. 그러므로 임의의 실수 a, b, c가 주어진다면 세 벡터로 구성된 임의의 조합이 결과 벡터와 같을 것이다.
a, b, c의 값을 알면 c3의 값을 알 수 있을거고, c2는 c3에 a, b의 값과 함께 대입하면 계산할 수 있다. c2와 c3을 이미 구했으므로 a값과 함께 대입하면 c1도 구할 수 있다. 즉 a, b, c의 값에 관계없이 c1, c2, c3을 구할 수 있다. a, b, c의 값은 이 식과는 아무 상관이 없다.
세 개의 벡터로 이루어진 이 벡터 집합이 R³를 생성한다고 할 수 있다.
이 벡터들은 선형독립할까?
아래의 식이 선형독립하려면 벡터들의 조합이 0의 벡터가 되는 어떠한 조합을 찾아야 한다.
선형종속한다면 이 상수들 중 적어도 하나는 0이 아니라는 것이다. 반대로 선형독립한다면 이 식의 경우에서는 c1, c2, c3 모두가 0이어야 한다.
a=b=c=0 이라고 하면 이 벡터를 0으로 두는 것과 같다. 세 벡터 조합이 0의 벡터가 되려면 모든 계수가 0일 때 존재한다. c1, c2, c3 모두가 0임을 계산했기때문에, 선형독립하는 벡터 집합이 된다. 이 중 어떠한 벡터도 다른 두 벡터의 결합으로 표현될 수 없다는 뜻도 된다.
R³을 생성하는 정확히 세 벡터가 있고 그 벡터들은 선형독립하다. 이 말은 즉, 다른 두 벡터의 조합으로 표현되는 중복되는 벡터가 없다는 것이고 정확히 세 개의 벡터가 R³를 Span(생성)한다는 것이다. 그러므로 증명하지 않아도 일반적으로 R³를 생성하는 세 개의 벡터가 있다면 그 벡터들은 선형독립한다는 것이다. 선형독립하지 않는다면 그 중 하나는 중복되었거나 필요없다는 뜻이 된다.
세 개의 벡터가 세 개의 요소로 된 집합이며 모두 선형독립한다면 그 벡터들이 R³을 생성한다고 볼 수 있다.
이 포스팅은 머신러닝/딥러닝을 위한 선행학습으로 칸 아카데미(Khan Academy)의 Linear algebra(선형 대수) Vectors and spaces의 강의에 Span and linear independence example 대한 학습노트입니다
'머신러닝&딥러닝 교육 > Linear algebra - khanacademy Course' 카테고리의 다른 글
Basis of a subspace (0) | 2018.01.01 |
---|---|
Linear subspaces (1) | 2018.01.01 |
More on linear independence (0) | 2017.12.30 |
Introduction to linear independence (0) | 2017.12.30 |
Linear combinations and span (0) | 2017.12.25 |